1/* Part of CHR (Constraint Handling Rules) 2 3 Author: Tom Schrijvers 4 E-mail: Tom.Schrijvers@cs.kuleuven.be 5 WWW: http://www.swi-prolog.org 6 Copyright (c) 2004-2011, K.U. Leuven 7 All rights reserved. 8 9 Redistribution and use in source and binary forms, with or without 10 modification, are permitted provided that the following conditions 11 are met: 12 13 1. Redistributions of source code must retain the above copyright 14 notice, this list of conditions and the following disclaimer. 15 16 2. Redistributions in binary form must reproduce the above copyright 17 notice, this list of conditions and the following disclaimer in 18 the documentation and/or other materials provided with the 19 distribution. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 29 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 31 ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 POSSIBILITY OF SUCH DAMAGE. 33*/ 34 35%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 36% Binomial Heap imlementation based on 37% 38% Functional Binomial Queues 39% James F. King 40% University of Glasgow 41%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 42 43:- module(binomialheap, 44 [ 45 empty_q/1, 46 insert_q/3, 47 insert_list_q/3, 48 delete_min_q/3, 49 find_min_q/2 50 ]). 51 52:- use_module(library(lists),[reverse/2]). 53 54% data Tree a = Node a [Tree a] 55% type BinQueue a = [Maybe (Tree a)] 56% data Maybe a = Zero | One a 57% type Item = (Entry,Key) 58 59key(_-Key,Key). 60 61empty_q([]). 62 63meld_q(P,Q,R) :- 64 meld_qc(P,Q,zero,R). 65 66meld_qc([],Q,zero,Q) :- !. 67meld_qc([],Q,C,R) :- !, 68 meld_q(Q,[C],R). 69meld_qc(P,[],C,R) :- !, 70 meld_qc([],P,C,R). 71meld_qc([zero|Ps],[zero|Qs],C,R) :- !, 72 R = [C | Rs], 73 meld_q(Ps,Qs,Rs). 74meld_qc([one(node(X,Xs))|Ps],[one(node(Y,Ys))|Qs],C,R) :- !, 75 key(X,KX), 76 key(Y,KY), 77 ( KX < KY -> 78 T = node(X,[node(Y,Ys)|Xs]) 79 ; 80 T = node(Y,[node(X,Xs)|Ys]) 81 ), 82 R = [C|Rs], 83 meld_qc(Ps,Qs,one(T),Rs). 84meld_qc([P|Ps],[Q|Qs],C,Rs) :- 85 meld_qc([Q|Ps],[C|Qs],P,Rs). 86 87insert_q(Q,I,NQ) :- 88 meld_q([one(node(I,[]))],Q,NQ). 89 90insert_list_q([],Q,Q). 91insert_list_q([I|Is],Q,NQ) :- 92 insert_q(Q,I,Q1), 93 insert_list_q(Is,Q1,NQ). 94 95min_tree([T|Ts],MT) :- 96 min_tree_acc(Ts,T,MT). 97 98min_tree_acc([],MT,MT). 99min_tree_acc([T|Ts],Acc,MT) :- 100 least(T,Acc,NAcc), 101 min_tree_acc(Ts,NAcc,MT). 102 103least(zero,T,T) :- !. 104least(T,zero,T) :- !. 105least(one(node(X,Xs)),one(node(Y,Ys)),T) :- 106 key(X,KX), 107 key(Y,KY), 108 ( KX < KY -> 109 T = one(node(X,Xs)) 110 ; 111 T = one(node(Y,Ys)) 112 ). 113 114remove_tree([],_,[]). 115remove_tree([T|Ts],I,[NT|NTs]) :- 116 ( T == zero -> 117 NT = T 118 ; 119 T = one(node(X,_)), 120 ( X == I -> 121 NT = zero 122 ; 123 NT = T 124 ) 125 ), 126 remove_tree(Ts,I,NTs). 127 128delete_min_q(Q,NQ,Min) :- 129 min_tree(Q,one(node(Min,Ts))), 130 remove_tree(Q,Min,Q1), 131 reverse(Ts,RTs), 132 make_ones(RTs,Q2), 133 meld_q(Q2,Q1,NQ). 134 135make_ones([],[]). 136make_ones([N|Ns],[one(N)|RQ]) :- 137 make_ones(Ns,RQ). 138 139find_min_q(Q,I) :- 140 min_tree(Q,one(node(I,_)))