/* Part of SWI-Prolog Author: Markus Triska and Matt Lilley WWW: http://www.swi-prolog.org Copyright (c) 2004-2017, SWI-Prolog Foundation VU University Amsterdam All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ :- module(crypto, [ crypto_n_random_bytes/2, % +N, -Bytes crypto_data_hash/3, % +Data, -Hash, +Options crypto_file_hash/3, % +File, -Hash, +Options crypto_context_new/2, % -Context, +Options crypto_data_context/3, % +Data, +C0, -C crypto_context_hash/2, % +Context, -Hash crypto_open_hash_stream/3, % +InStream, -HashStream, +Options crypto_stream_hash/2, % +HashStream, -Hash crypto_password_hash/2, % +Password, ?Hash crypto_password_hash/3, % +Password, ?Hash, +Options crypto_data_hkdf/4, % +Data, +Length, -Bytes, +Options ecdsa_sign/4, % +Key, +Data, -Signature, +Options ecdsa_verify/4, % +Key, +Data, +Signature, +Options crypto_data_decrypt/6, % +CipherText, +Algorithm, +Key, +IV, -PlainText, +Options crypto_data_encrypt/6, % +PlainText, +Algorithm, +Key, +IV, -CipherText, +Options hex_bytes/2, % ?Hex, ?List rsa_private_decrypt/4, % +Key, +Ciphertext, -Plaintext, +Enc rsa_private_encrypt/4, % +Key, +Plaintext, -Ciphertext, +Enc rsa_public_decrypt/4, % +Key, +Ciphertext, -Plaintext, +Enc rsa_public_encrypt/4, % +Key, +Plaintext, -Ciphertext, +Enc rsa_sign/4, % +Key, +Data, -Signature, +Options rsa_verify/4, % +Key, +Data, +Signature, +Options crypto_modular_inverse/3, % +X, +M, -Y crypto_generate_prime/3, % +N, -P, +Options crypto_is_prime/2, % +P, +Options crypto_name_curve/2, % +Name, -Curve crypto_curve_order/2, % +Curve, -Order crypto_curve_generator/2, % +Curve, -Generator crypto_curve_scalar_mult/4 % +Curve, +Scalar, +Point, -Result ]). :- use_module(library(option)). :- use_foreign_library(foreign(crypto4pl)). /** Cryptography and authentication library This library provides bindings to functionality of OpenSSL that is related to cryptography and authentication, not necessarily involving connections, sockets or streams. The hash functionality of this library subsumes and extends that of `library(sha)`, `library(hash_stream)` and `library(md5)` by providing a unified interface to all available digest algorithms. The underlying OpenSSL library (`libcrypto`) is dynamically loaded if _either_ `library(crypto)` or `library(ssl)` are loaded. Therefore, if your application uses `library(ssl)`, you can use `library(crypto)` for hashing without increasing the memory footprint of your application. In other cases, the specialised hashing libraries are more lightweight but less general alternatives to `library(crypto)`. @author [Markus Triska](https://www.metalevel.at) @author Matt Lilley */ %% crypto_n_random_bytes(+N, -Bytes) is det % % Bytes is unified with a list of N cryptographically secure % pseudo-random bytes. Each byte is an integer between 0 and 255. If % the internal pseudo-random number generator (PRNG) has not been % seeded with enough entropy to ensure an unpredictable byte % sequence, an exception is thrown. % % One way to relate such a list of bytes to an _integer_ is to use % CLP(FD) constraints as follows: % % == % :- use_module(library(clpfd)). % % bytes_integer(Bs, N) :- % foldl(pow, Bs, 0-0, N-_). % % pow(B, N0-I0, N-I) :- % B in 0..255, % N #= N0 + B*256^I0, % I #= I0 + 1. % == % % With this definition, you can generate a random 256-bit integer % _from_ a list of 32 random _bytes_: % % == % ?- crypto_n_random_bytes(32, Bs), % bytes_integer(Bs, I). % Bs = [98, 9, 35, 100, 126, 174, 48, 176, 246|...], % I = 109798276762338328820827...(53 digits omitted). % == % % The above relation also works in the other direction, letting you % translate an integer _to_ a list of bytes. In addition, you can % use hex_bytes/2 to convert bytes to _tokens_ that can be easily % exchanged in your applications. This also works if you have % compiled SWI-Prolog without support for large integers. /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SHA256 is the current default for several hash-related predicates. It is deemed sufficiently secure for the foreseeable future. Yet, application programmers must be aware that the default may change in future versions. The hash predicates all yield the algorithm they used if a Prolog variable is used for the pertaining option. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ default_hash(sha256). functor_hash_options(F, Hash, Options0, [Option|Options]) :- Option =.. [F,Hash], ( select(Option, Options0, Options) -> ( var(Hash) -> default_hash(Hash) ; must_be(atom, Hash) ) ; Options = Options0, default_hash(Hash) ). %% crypto_data_hash(+Data, -Hash, +Options) is det % % Hash is the hash of Data. The conversion is controlled % by Options: % % * algorithm(+Algorithm) % One of =md5= (_insecure_), =sha1= (_insecure_), =ripemd160=, % =sha224=, =sha256=, =sha384=, =sha512=, =sha3_224=, =sha3_256=, % =sha3_384=, =sha3_512=, =blake2s256= or =blake2b512=. The BLAKE % digest algorithms require OpenSSL 1.1.0 or greater, and the SHA-3 % algorithms require OpenSSL 1.1.1 or greater. The default is a % cryptographically secure algorithm. If you specify a variable, % then that variable is unified with the algorithm that was used. % * encoding(+Encoding) % If Data is a sequence of character _codes_, this must be % translated into a sequence of _bytes_, because that is what % the hashing requires. The default encoding is =utf8=. The % other meaningful value is =octet=, claiming that Data contains % raw bytes. % * hmac(+Key) % If this option is specified, a _hash-based message authentication % code_ (HMAC) is computed, using the specified Key which is either % an atom, string or list of _bytes_. Any of the available digest % algorithms can be used with this option. The cryptographic % strength of the HMAC depends on that of the chosen algorithm and % also on the key. This option requires OpenSSL 1.1.0 or greater. % % @param Data is either an atom, string or code-list % @param Hash is an atom that represents the hash in hexadecimal encoding. % % @see hex_bytes/2 for conversion between hexadecimal encoding and % lists of bytes. % @see crypto_password_hash/2 for the important use case of passwords. crypto_data_hash(Data, Hash, Options) :- crypto_context_new(Context0, Options), crypto_data_context(Data, Context0, Context), crypto_context_hash(Context, Hash). %! crypto_file_hash(+File, -Hash, +Options) is det. % % True if Hash is the hash of the content of File. For Options, % see crypto_data_hash/3. crypto_file_hash(File, Hash, Options) :- setup_call_cleanup(open(File, read, In, [type(binary)]), crypto_stream_hash(In, Hash, Options), close(In)). crypto_stream_hash(Stream, Hash, Options) :- crypto_context_new(Context0, Options), update_hash(Stream, Context0, Context), crypto_context_hash(Context, Hash). update_hash(In, Context0, Context) :- ( at_end_of_stream(In) -> Context = Context0 ; read_pending_codes(In, Data, []), crypto_data_context(Data, Context0, Context1), update_hash(In, Context1, Context) ). %! crypto_context_new(-Context, +Options) is det. % % Context is unified with the empty context, taking into account % Options. The context can be used in crypto_data_context/3. For % Options, see crypto_data_hash/3. % % @param Context is an opaque pure Prolog term that is subject to % garbage collection. crypto_context_new(Context, Options0) :- functor_hash_options(algorithm, _, Options0, Options), '_crypto_context_new'(Context, Options). %! crypto_data_context(+Data, +Context0, -Context) is det % % Context0 is an existing computation context, and Context is the % new context after hashing Data in addition to the previously % hashed data. Context0 may be produced by a prior invocation of % either crypto_context_new/2 or crypto_data_context/3 itself. % % This predicate allows a hash to be computed in chunks, which may % be important while working with Metalink (RFC 5854), BitTorrent % or similar technologies, or simply with big files. crypto_data_context(Data, Context0, Context) :- '_crypto_hash_context_copy'(Context0, Context), '_crypto_update_hash_context'(Data, Context). %! crypto_context_hash(+Context, -Hash) % % Obtain the hash code of Context. Hash is an atom representing % the hash code that is associated with the current state of the % computation context Context. crypto_context_hash(Context, Hash) :- '_crypto_hash_context_copy'(Context, Copy), '_crypto_hash_context_hash'(Copy, List), hex_bytes(Hash, List). %! crypto_open_hash_stream(+OrgStream, -HashStream, +Options) is det. % % Open a filter stream on OrgStream that maintains a hash. The hash % can be retrieved at any time using crypto_stream_hash/2. Available % Options in addition to those of crypto_data_hash/3 are: % % - close_parent(+Bool) % If `true` (default), closing the filter stream also closes the % original (parent) stream. crypto_open_hash_stream(OrgStream, HashStream, Options) :- crypto_context_new(Context, Options), '_crypto_open_hash_stream'(OrgStream, HashStream, Context). %! crypto_stream_hash(+HashStream, -Hash) is det. % % Unify Hash with a hash for the bytes sent to or read from % HashStream. Note that the hash is computed on the stream % buffers. If the stream is an output stream, it is first flushed % and the Digest represents the hash at the current location. If % the stream is an input stream the Digest represents the hash of % the processed input including the already buffered data. crypto_stream_hash(Stream, Hash) :- '_crypto_stream_hash_context'(Stream, Context), crypto_context_hash(Context, Hash). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The so-called modular crypt format (MCF) is a standard for encoding password hash strings. However, there's no official specification document describing it. Nor is there a central registry of identifiers or rules. This page describes what is known about it: https://pythonhosted.org/passlib/modular_crypt_format.html As of 2016, the MCF is deprecated in favor of the PHC String Format: https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md This is what we are using below. For the time being, it is best to treat these hashes as opaque atoms in applications. Please let me know if you need to rely on any specifics of this format. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ %! crypto_password_hash(+Password, ?Hash) is semidet. % % If Hash is instantiated, the predicate succeeds _iff_ the hash % matches the given password. Otherwise, the call is equivalent to % crypto_password_hash(Password, Hash, []) and computes a % password-based hash using the default options. crypto_password_hash(Password, Hash) :- ( nonvar(Hash) -> must_be(atom, Hash), split_string(Hash, "$", "$", ["pbkdf2-sha512",Ps,SaltB64,HashB64]), atom_to_term(Ps, t=Iterations, []), bytes_base64(SaltBytes, SaltB64), bytes_base64(HashBytes, HashB64), '_crypto_password_hash'(Password, SaltBytes, Iterations, HashBytes) ; crypto_password_hash(Password, Hash, []) ). %! crypto_password_hash(+Password, -Hash, +Options) is det. % % Derive Hash based on Password. This predicate is similar to % crypto_data_hash/3 in that it derives a hash from given data. % However, it is tailored for the specific use case of % _passwords_. One essential distinction is that for this use case, % the derivation of a hash should be _as slow as possible_ to % counteract brute-force attacks over possible passwords. % % Another important distinction is that equal passwords must yield, % with very high probability, _different_ hashes. For this reason, % cryptographically strong random numbers are automatically added to % the password before a hash is derived. % % Hash is unified with an atom that contains the computed hash and all % parameters that were used, except for the password. Instead of % storing passwords, store these hashes. Later, you can verify the % validity of a password with crypto_password_hash/2, comparing the % then entered password to the stored hash. If you need to export this % atom, you should treat it as opaque ASCII data with up to 255 bytes % of length. The maximal length may increase in the future. % % Admissible options are: % % - algorithm(+Algorithm) % The algorithm to use. Currently, the only available algorithm % is =|pbkdf2-sha512|=, which is therefore also the default. % - cost(+C) % C is an integer, denoting the binary logarithm of the number % of _iterations_ used for the derivation of the hash. This % means that the number of iterations is set to 2^C. Currently, % the default is 17, and thus more than one hundred _thousand_ % iterations. You should set this option as high as your server % and users can tolerate. The default is subject to change and % will likely increase in the future or adapt to new algorithms. % - salt(+Salt) % Use the given list of bytes as salt. By default, % cryptographically secure random numbers are generated for this % purpose. The default is intended to be secure, and constitutes % the typical use case of this predicate. % % Currently, PBKDF2 with SHA-512 is used as the hash derivation % function, using 128 bits of salt. All default parameters, including % the algorithm, are subject to change, and other algorithms will also % become available in the future. Since computed hashes store all % parameters that were used during their derivation, such changes will % not affect the operation of existing deployments. Note though that % new hashes will then be computed with the new default parameters. % % @see crypto_data_hkdf/4 for generating keys from Hash. crypto_password_hash(Password, Hash, Options) :- must_be(list, Options), option(cost(C), Options, 17), Iterations is 2^C, Algorithm = 'pbkdf2-sha512', % current default and only option option(algorithm(Algorithm), Options, Algorithm), ( option(salt(SaltBytes), Options) -> true ; crypto_n_random_bytes(16, SaltBytes) ), '_crypto_password_hash'(Password, SaltBytes, Iterations, HashBytes), bytes_base64(HashBytes, HashB64), bytes_base64(SaltBytes, SaltB64), format(atom(Hash), "$pbkdf2-sha512$t=~d$~w$~w", [Iterations,SaltB64,HashB64]). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Bidirectional Bytes <-> Base64 conversion as required by PHC format. Note that *no padding* must be used, and that we must be able to encode the whole range of bytes, not only UTF-8 sequences! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ bytes_base64(Bytes, Base64) :- ( var(Bytes) -> base64_encoded(Atom, Base64, [padding(false)]), atom_codes(Atom, Bytes) ; atom_codes(Atom, Bytes), base64_encoded(Atom, Base64, [padding(false)]) ). %! crypto_data_hkdf(+Data, +Length, -Bytes, +Options) is det. % % Concentrate possibly dispersed entropy of Data and then expand it to % the desired length. Bytes is unified with a list of _bytes_ of % length Length, and is suitable as input keying material and % initialization vectors to the symmetric encryption predicates. % % Admissible options are: % % - algorithm(+Algorithm) % A hashing algorithm as specified to crypto_data_hash/3. The % default is a cryptographically secure algorithm. If you % specify a variable, then it is unified with the algorithm % that was used. % - info(+Info) % Optional context and application specific information, % specified as an atom, string or list of _bytes_. The default % is the zero length atom ''. % - salt(+List) % Optionally, a list of _bytes_ that are used as salt. The % default is all zeroes. % - encoding(+Atom) % Either =|utf8|= (default) or =|octet|=, denoting % the representation of Data as in crypto_data_hash/3. % % The `info/1` option can be used to generate multiple keys from a % single master key, using for example values such as =|key|= and % =|iv|=, or the name of a file that is to be encrypted. % % This predicate requires OpenSSL 1.1.0 or greater. % % @see crypto_n_random_bytes/2 to obtain a suitable salt. crypto_data_hkdf(Data, L, Bytes, Options0) :- functor_hash_options(algorithm, Algorithm, Options0, Options), option(salt(SaltBytes), Options, []), option(info(Info), Options, ''), option(encoding(Enc), Options, utf8), '_crypto_data_hkdf'(Data, SaltBytes, Info, Algorithm, Enc, L, Bytes). %! ecdsa_sign(+Key, +Data, -Signature, +Options) % % Create an ECDSA signature for Data with EC private key Key. % Among the most common cases is signing a hash that was created % with crypto_data_hash/3 or other predicates of this library. For % this reason, the default encoding (`hex`) assumes that Data is % an atom, string, character list or code list representing the % data in hexadecimal notation. See rsa_sign/4 for an example. % % Options: % % - encoding(+Encoding) % Encoding to use for Data. Default is `hex`. Alternatives % are `octet`, `utf8` and `text`. ecdsa_sign(private_key(ec(Private,Public0,Curve)), Data0, Signature, Options) :- option(encoding(Enc0), Options, hex), hex_encoding(Enc0, Data0, Enc, Data), hex_bytes(Public0, Public), '_crypto_ecdsa_sign'(ec(Private,Public,Curve), Data, Enc, Signature). hex_encoding(hex, Data0, octet, Data) :- !, hex_bytes(Data0, Data). hex_encoding(Enc, Data, Enc, Data). %! ecdsa_verify(+Key, +Data, +Signature, +Options) is semidet. % % True iff Signature can be verified as the ECDSA signature for % Data, using the EC public key Key. % % Options: % % - encoding(+Encoding) % Encoding to use for Data. Default is `hex`. Alternatives % are `octet`, `utf8` and `text`. ecdsa_verify(public_key(ec(Private,Public0,Curve)), Data0, Signature0, Options) :- option(encoding(Enc0), Options, hex), hex_encoding(Enc0, Data0, Enc, Data), hex_bytes(Public0, Public), hex_bytes(Signature0, Signature), '_crypto_ecdsa_verify'(ec(Private,Public,Curve), Data, Enc, Signature). %! hex_bytes(?Hex, ?List) is det. % % Relation between a hexadecimal sequence and a list of bytes. Hex % is an atom, string, list of characters or list of codes in % hexadecimal encoding. This is the format that is used by % crypto_data_hash/3 and related predicates to represent _hashes_. % Bytes is a list of _integers_ between 0 and 255 that represent the % sequence as a list of bytes. At least one of the arguments must % be instantiated. When converting List _to_ Hex, an _atom_ is used % to represent the sequence of hexadecimal digits. % % Example: % % == % ?- hex_bytes('501ACE', Bs). % Bs = [80, 26, 206]. % == % % @see base64_encoded/3 for Base64 encoding, which is often used to % transfer or embed binary data in applications. hex_bytes(Hs, Bytes) :- ( ground(Hs) -> string_chars(Hs, Chars), ( phrase(hex_bytes(Chars), Bytes) -> true ; domain_error(hex_encoding, Hs) ) ; must_be(list(between(0,255)), Bytes), phrase(bytes_hex(Bytes), Chars), atom_chars(Hs, Chars) ). hex_bytes([]) --> []. hex_bytes([H1,H2|Hs]) --> [Byte], { char_type(H1, xdigit(High)), char_type(H2, xdigit(Low)), Byte is High*16 + Low }, hex_bytes(Hs). bytes_hex([]) --> []. bytes_hex([B|Bs]) --> { High is B>>4, Low is B /\ 0xf, char_type(C0, xdigit(High)), char_type(C1, xdigit(Low)) }, [C0,C1], bytes_hex(Bs). %! rsa_private_decrypt(+PrivateKey, +CipherText, -PlainText, +Options) is det. %! rsa_private_encrypt(+PrivateKey, +PlainText, -CipherText, +Options) is det. %! rsa_public_decrypt(+PublicKey, +CipherText, -PlainText, +Options) is det. %! rsa_public_encrypt(+PublicKey, +PlainText, -CipherText, +Options) is det. % % RSA Public key encryption and decryption primitives. A string % can be safely communicated by first encrypting it and have the % peer decrypt it with the matching key and predicate. The length % of the string is limited by the key length. % % Options: % % - encoding(+Encoding) % Encoding to use for Data. Default is `utf8`. Alternatives % are `utf8` and `octet`. % % - padding(+PaddingScheme) % Padding scheme to use. Default is `pkcs1`. Alternatives % are `pkcs1_oaep`, `sslv23` and `none`. Note that `none` should % only be used if you implement cryptographically sound padding % modes in your application code as encrypting unpadded data with % RSA is insecure % % @see load_private_key/3, load_public_key/2 can be use to load % keys from a file. The predicate load_certificate/2 can be used % to obtain the public key from a certificate. % % @error ssl_error(Code, LibName, FuncName, Reason) is raised if % there is an error, e.g., if the text is too long for the key. %! rsa_sign(+Key, +Data, -Signature, +Options) is det. % % Create an RSA signature for Data with private key Key. Options: % % - type(+Type) % SHA algorithm used to compute the digest. Values are % `sha1`, `sha224`, `sha256`, `sha384` or `sha512`. The % default is a cryptographically secure algorithm. If you % specify a variable, then it is unified with the algorithm that % was used. % % - encoding(+Encoding) % Encoding to use for Data. Default is `hex`. Alternatives % are `octet`, `utf8` and `text`. % % This predicate can be used to compute a =|sha256WithRSAEncryption|= % signature as follows: % % ``` % sha256_with_rsa(PemKeyFile, Password, Data, Signature) :- % Algorithm = sha256, % read_key(PemKeyFile, Password, Key), % crypto_data_hash(Data, Hash, [algorithm(Algorithm), % encoding(octet)]), % rsa_sign(Key, Hash, Signature, [type(Algorithm)]). % % read_key(File, Password, Key) :- % setup_call_cleanup( % open(File, read, In, [type(binary)]), % load_private_key(In, Password, Key), % close(In)). % ``` % % Note that a hash that is computed by crypto_data_hash/3 can be % directly used in rsa_sign/4 as well as ecdsa_sign/4. rsa_sign(Key, Data0, Signature, Options0) :- functor_hash_options(type, Type, Options0, Options), option(encoding(Enc0), Options, hex), hex_encoding(Enc0, Data0, Enc, Data), rsa_sign(Key, Type, Enc, Data, Signature). %! rsa_verify(+Key, +Data, +Signature, +Options) is semidet. % % Verify an RSA signature for Data with public key Key. % % Options: % % - type(+Type) % SHA algorithm used to compute the digest. Values are `sha1`, % `sha224`, `sha256`, `sha384` or `sha512`. The default is the % same as for rsa_sign/4. This option must match the algorithm % that was used for signing. When operating with different parties, % the used algorithm must be communicated over an authenticated % channel. % % - encoding(+Encoding) % Encoding to use for Data. Default is `hex`. Alternatives % are `octet`, `utf8` and `text`. rsa_verify(Key, Data0, Signature0, Options0) :- functor_hash_options(type, Type, Options0, Options), option(encoding(Enc0), Options, hex), hex_encoding(Enc0, Data0, Enc, Data), hex_bytes(Signature0, Signature), rsa_verify(Key, Type, Enc, Data, Signature). %! crypto_data_decrypt(+CipherText, %! +Algorithm, %! +Key, %! +IV, %! -PlainText, %! +Options). % % Decrypt the given CipherText, using the symmetric algorithm % Algorithm, key Key, and initialization vector IV, to give PlainText. % CipherText must be a string, atom or list of codes or characters, % and PlainText is created as a string. Key and IV are typically % lists of _bytes_, though atoms and strings are also permitted. % Algorithm must be an algorithm which your copy of OpenSSL knows. See % crypto_data_encrypt/6 for an example. % % - encoding(+Encoding) % Encoding to use for CipherText. Default is `utf8`. % Alternatives are `utf8` and `octet`. % % - padding(+PaddingScheme) % For block ciphers, the padding scheme to use. Default is % `block`. You can disable padding by supplying `none` here. % % - tag(+Tag) % For authenticated encryption schemes, the tag must be specified as % a list of bytes exactly as they were generated upon encryption. % This option requires OpenSSL 1.1.0 or greater. % % - min_tag_length(+Length) % If the tag length is smaller than 16, this option must be used % to permit such shorter tags. This is used as a safeguard against % truncation attacks, where an attacker provides a short tag that % is easier to guess. crypto_data_decrypt(CipherText, Algorithm, Key, IV, PlainText, Options) :- ( option(tag(Tag), Options) -> option(min_tag_length(MinTagLength), Options, 16), length(Tag, TagLength), compare(C, TagLength, MinTagLength), tag_length_ok(C, Tag) ; Tag = [] ), '_crypto_data_decrypt'(CipherText, Algorithm, Key, IV, Tag, PlainText, Options). % This test is important to prevent truncation attacks of the tag. tag_length_ok(=, _). tag_length_ok(>, _). tag_length_ok(<, Tag) :- domain_error(tag_is_too_short, Tag). %! crypto_data_encrypt(+PlainText, %! +Algorithm, %! +Key, %! +IV, %! -CipherText, %! +Options). % % Encrypt the given PlainText, using the symmetric algorithm % Algorithm, key Key, and initialization vector (or nonce) IV, to give % CipherText. % % PlainText must be a string, atom or list of codes or characters, and % CipherText is created as a string. Key and IV are typically lists % of _bytes_, though atoms and strings are also permitted. Algorithm % must be an algorithm which your copy of OpenSSL knows % about. % % Keys and IVs can be chosen at random (using for example % crypto_n_random_bytes/2) or derived from input keying material (IKM) % using for example crypto_data_hkdf/4. This input is often a shared % secret, such as a negotiated point on an elliptic curve, or the hash % that was computed from a password via crypto_password_hash/3 with a % freshly generated and specified _salt_. % % Reusing the same combination of Key and IV typically leaks at least % _some_ information about the plaintext. For example, identical % plaintexts will then correspond to identical ciphertexts. For some % algorithms, reusing an IV with the same Key has disastrous results % and can cause the loss of all properties that are otherwise % guaranteed. Especially in such cases, an IV is also called a % _nonce_ (number used once). If an IV is not needed for your % algorithm (such as =|'aes-128-ecb'|=) then any value can be provided % as it will be ignored by the underlying implementation. Note that % such algorithms do not provide _semantic security_ and are thus % insecure. You should use stronger algorithms instead. % % It is safe to store and transfer the used initialization vector (or % nonce) in plain text, but the key _must be kept secret_. % % Commonly used algorithms include: % % $ =|'chacha20-poly1305'|= : % A powerful and efficient _authenticated_ encryption scheme, % providing secrecy and at the same time reliable protection % against undetected _modifications_ of the encrypted data. This % is a very good choice for virtually all use cases. It is a % _stream cipher_ and can encrypt data of any length up to 256 GB. % Further, the encrypted data has exactly the same length % as the original, and no padding is used. It requires OpenSSL % 1.1.0 or greater. See below for an example. % % $ =|'aes-128-gcm'|= : % Also an authenticated encryption scheme. It uses a 128-bit % (i.e., 16 bytes) key and a 96-bit (i.e., 12 bytes) nonce. It % requires OpenSSL 1.1.0 or greater. % % $ =|'aes-128-cbc'|= : % A _block cipher_ that provides secrecy, but does not protect % against unintended modifications of the cipher text. This % algorithm uses 128-bit (16 bytes) keys and initialization % vectors. It works with all supported versions of OpenSSL. If % possible, consider using an authenticated encryption scheme % instead. % % Options: % % - encoding(+Encoding) % Encoding to use for PlainText. Default is `utf8`. Alternatives % are `utf8` and `octet`. % % - padding(+PaddingScheme) % For block ciphers, the padding scheme to use. Default is % `block`. You can disable padding by supplying `none` here. If % padding is disabled for block ciphers, then the length of the % ciphertext must be a multiple of the block size. % % - tag(-List) % For authenticated encryption schemes, List is unified with a % list of _bytes_ holding the tag. This tag must be provided for % decryption. Authenticated encryption requires OpenSSL 1.1.0 or % greater. % % - tag_length(+Length) % For authenticated encryption schemes, the desired length of the % tag, specified as the number of bytes. The default is % 16. Smaller numbers are not recommended. % % For example, with OpenSSL 1.1.0 and greater, we can use the ChaCha20 % stream cipher with the Poly1305 authenticator. This cipher uses a % 256-bit key and a 96-bit _nonce_, i.e., 32 and 12 _bytes_, % respectively: % % ``` % ?- Algorithm = 'chacha20-poly1305', % crypto_n_random_bytes(32, Key), % crypto_n_random_bytes(12, IV), % crypto_data_encrypt("this is some input", Algorithm, % Key, IV, CipherText, [tag(Tag)]), % crypto_data_decrypt(CipherText, Algorithm, % Key, IV, RecoveredText, [tag(Tag)]). % Algorithm = 'chacha20-poly1305', % Key = [65, 147, 140, 197, 27, 60, 198, 50, 218|...], % IV = [253, 232, 174, 84, 168, 208, 218, 168, 228|...], % CipherText = , % Tag = [248, 220, 46, 62, 255, 9, 178, 130, 250|...], % RecoveredText = "this is some input". % ``` % % In this example, we use crypto_n_random_bytes/2 to generate a key % and nonce from cryptographically secure random numbers. For % repeated applications, you must ensure that a nonce is only used % _once_ together with the same key. Note that for _authenticated_ % encryption schemes, the _tag_ that was computed during encryption is % necessary for decryption. It is safe to store and transfer the tag % in plain text. % % @see crypto_data_decrypt/6. % @see hex_bytes/2 for conversion between bytes and hex encoding. crypto_data_encrypt(PlainText, Algorithm, Key, IV, CipherText, Options) :- ( option(tag(AuthTag), Options) -> option(tag_length(AuthLength), Options, 16) ; AuthTag = _, AuthLength = -1 ), '_crypto_data_encrypt'(PlainText, Algorithm, Key, IV, AuthLength, AuthTag, CipherText, Options). %% crypto_modular_inverse(+X, +M, -Y) is det % % Compute the modular multiplicative inverse of the integer X. Y is % unified with an integer such that X*Y is congruent to 1 modulo M. crypto_modular_inverse(X, M, Y) :- integer_serialized(X, XS), integer_serialized(M, MS), '_crypto_modular_inverse'(XS, MS, YHex), hex_to_integer(YHex, Y). integer_serialized(I, serialized(S)) :- must_be(integer, I), integer_atomic_sign(I, Sign), Abs is abs(I), format(atom(A0), "~16r", [Abs]), atom_length(A0, L), Rem is L mod 2, hex_pad(Rem, Sign, A0, S). integer_atomic_sign(I, S) :- Sign is sign(I), sign_atom(Sign, S). sign_atom(-1, '-'). sign_atom( 0, ''). sign_atom( 1, ''). hex_pad(0, Sign, A0, A) :- atom_concat(Sign, A0, A). hex_pad(1, Sign, A0, A) :- atomic_list_concat([Sign,'0',A0], A). pow256(Byte, N0-I0, N-I) :- N is N0 + Byte*256^I0, I is I0 + 1. hex_to_integer(Hex, N) :- hex_bytes(Hex, Bytes0), reverse(Bytes0, Bytes), foldl(pow256, Bytes, 0-0, N-_). %% crypto_generate_prime(+N, -P, +Options) is det % % Generate a prime P with at least N bits. Options is a list of options. % Currently, the only supported option is: % % * safe(Boolean) % If `Boolean` is `true` (default is `false`), then a _safe_ prime % is generated. This means that P is of the form 2*Q + 1 where Q % is also prime. crypto_generate_prime(Bits, P, Options) :- must_be(list, Options), option(safe(Safe), Options, false), '_crypto_generate_prime'(Bits, Hex, Safe, Options), hex_to_integer(Hex, P). %% crypto_is_prime(+P, +Options) is semidet % % True iff P passes a probabilistic primality test. Options is a % list of options. Currently, the only supported option is: % % * iterations(N) % N is the number of iterations that are performed. If this option % is not specified, a number of iterations is used such that the % probability of a false positive is at most 2^(-80). crypto_is_prime(P0, Options) :- must_be(integer, P0), must_be(list, Options), option(iterations(N), Options, -1), integer_serialized(P0, P), '_crypto_is_prime'(P, N). %% crypto_name_curve(+Name, -Curve) is det % % Obtain a handle for a _named_ elliptic curve. Name is an atom, and % Curve is unified with an opaque object that represents the curve. % Currently, only elliptic curves over prime fields are % supported. Examples of such curves are `prime256v1` and % `secp256k1`. % % If you have OpenSSL installed, you can get a list of supported % curves via: % % == % $ openssl ecparam -list_curves % == %% crypto_curve_order(+Curve, -Order) is det % % Obtain the order of an elliptic curve. Order is an integer, % denoting how many points on the curve can be reached by % multiplying the curve's generator with a scalar. crypto_curve_order(Curve, Order) :- '_crypto_curve_order'(Curve, Hex), hex_to_integer(Hex, Order). %% crypto_curve_generator(+Curve, -Point) is det % % Point is the _generator_ of the elliptic curve Curve. crypto_curve_generator(Curve, point(X,Y)) :- '_crypto_curve_generator'(Curve, X0, Y0), hex_to_integer(X0, X), hex_to_integer(Y0, Y). %% crypto_curve_scalar_mult(+Curve, +N, +Point, -R) is det % % R is the result of N times Point on the elliptic curve Curve. N % must be an integer, and Point must be a point on the curve. crypto_curve_scalar_mult(Curve, S0, point(X0,Y0), point(A,B)) :- maplist(integer_serialized, [S0,X0,Y0], [S,X,Y]), '_crypto_curve_scalar_mult'(Curve, S, X, Y, A0, B0), hex_to_integer(A0, A), hex_to_integer(B0, B). /******************************* * Sandboxing * *******************************/ :- multifile sandbox:safe_primitive/1. sandbox:safe_primitive(crypto:hex_bytes(_,_)). sandbox:safe_primitive(crypto:crypto_n_random_bytes(_,_)). sandbox:safe_primitive(crypto:crypto_data_hash(_,_,_)). sandbox:safe_primitive(crypto:crypto_data_context(_,_,_)). sandbox:safe_primitive(crypto:crypto_context_new(_,_)). sandbox:safe_primitive(crypto:crypto_context_hash(_,_)). sandbox:safe_primitive(crypto:crypto_password_hash(_,_)). sandbox:safe_primitive(crypto:crypto_password_hash(_,_,_)). sandbox:safe_primitive(crypto:crypto_data_hkdf(_,_,_,_)). sandbox:safe_primitive(crypto:ecdsa_sign(_,_,_,_)). sandbox:safe_primitive(crypto:ecdsa_verify(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_sign(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_verify(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_public_encrypt(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_public_decrypt(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_private_encrypt(_,_,_,_)). sandbox:safe_primitive(crypto:rsa_private_decrypt(_,_,_,_)). sandbox:safe_primitive(crypto:crypto_data_decrypt(_,_,_,_,_,_)). sandbox:safe_primitive(crypto:crypto_data_encrypt(_,_,_,_,_,_)). sandbox:safe_primitive(crypto:crypto_modular_inverse(_,_,_)). sandbox:safe_primitive(crypto:crypto_generate_prime(_,_,_)). sandbox:safe_primitive(crypto:crypto_is_prime(_,_)). sandbox:safe_primitive(crypto:crypto_name_curve(_,_)). sandbox:safe_primitive(crypto:crypto_curve_order(_,_)). sandbox:safe_primitive(crypto:crypto_curve_generator(_,_)). sandbox:safe_primitive(crypto:crypto_curve_scalar_mult(_,_,_,_)). /******************************* * MESSAGES * *******************************/ :- multifile prolog:error_message//1. prolog:error_message(ssl_error(ID, _Library, Function, Reason)) --> [ 'SSL(~w) ~w: ~w'-[ID, Function, Reason] ].